[ad_1]
Johnson, NE et al. Population-based prevalence of myotonic dystrophy type 1 using statewide blood screening program genetic analysis. Neurology https://doi.org/10.1212/WNL.0000000000011425 (2021).
Smith, CA & Gutmann, L. Management and therapeutics of myotonic dystrophy type 1. Fluent. To treat. Neurol options. 1852 (2016).
Rossi, S. et al. Prevalence and predictive factors of respiratory failure in a large cohort of patients with myotonic dystrophy type 1 (DM1): retrospective and cross-sectional study. J. Neurol. Science. 399118-124 (2019).
Hawkins, AM et al. Respiratory dysfunction in myotonic dystrophy type 1: a systematic review. Neuromuscular. Disorder. 29198-212 (2019).
Ozimski, LL, Sabater-Arcis, M., Bargiela, A. & Artero, R. The characteristics of muscle dysfunction in myotonic dystrophy type 1. Biol. Round. https://doi.org/10.1111/brv.12674 (2020).
Pettersson, OJ, Aagaard, L., Jensen, TG, and Damgaard, CK Molecular mechanisms in DM1 – A focus on foci. Nucleic Acids Res. https://doi.org/10.1093/nar/gkv029 (2015).
Sergi, G., Trevisan, C., Veronese, N., Lucato, P. & Manzato, E. Imaging of sarcopenia. EUR. J. Radiol. 851519-1524 (2016).
Sanz-Requena, R. et al. The role of imaging biomarkers in the assessment of sarcopenia. Diagnostic ten534 (2020).
Díaz-Manera, J., Llauger, J., Gallardo, E. & Illa, I. Muscle MRI in muscular dystrophies. Acta Myol. 3495-108 (2015).
Google Scholar
Carlier, PG et al. Quantitative nuclear magnetic resonance imaging and spectroscopy of skeletal muscle as an outcome measure for clinical trials. J. Neuromuscul. Say. 31–28 (2016).
Mitchell, WK et al. Sarcopenia, dynapenia, and the impact of aging on human skeletal muscle size and strength; a quantitative report. Front. Physiol. https://doi.org/10.3389/fphys.2012.00260 (2012).
Heskamp, L. et al. Lower limb muscle pathology in myotonic dystrophy type 1 assessed by quantitative MRI. Neurology 92e2803–e2814 (2019).
van der Plas, E. et al. Quantitative muscle MRI as a sensitive marker of early muscle pathology in myotonic dystrophy type 1. Muscular nerve 63553-562 (2021).
Peric, S. et al. Magnetic resonance imaging of leg muscles in patients with myotonic dystrophies. J. Neurol. 2641899-1908 (2017).
Steenkjaer, CH, Mencagli, RA, Vaeggemose, M. & Andersen, H. Isokinetic strength and lower extremity muscle degeneration in patients with myotonic dystrophy; an MRI study. Neuromuscular. Disorder. 31198-211 (2021).
Garibaldi, M. et al. Muscle magnetic resonance imaging in myotonic dystrophy type 1 (DM1): refining muscle involvement and its implications for clinical trials. EUR. J. Neurol. https://doi.org/10.1111/ene.15174 (2021).
Pascual-Gilabert, M., López-Castel, A. & Artero, R. Drug development for myotonic dystrophy type 1: A pipeline to market. Drug discovery. Today 261765-1772 (2021).
Mankodi, A. et al. Myotonic dystrophy in transgenic mice expressing an enlarged CUG repeat. Science 2891769-1773 (2000).
Mankodi, A. et al. Extended CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and skeletal muscle hyperexcitability in myotonic dystrophy. Mol. Cell ten35–44 (2002).
Vihola, A. et al. Histopathological differences of myotonic dystrophy type 1 (DM1) and PROMM/DM2. Neurology 601854–1857 (2003).
Wei, C. et al. Correcting GSK3beta at a young age prevents muscle pathology in mice with myotonic dystrophy type 1. FASB J 322073-2085 (2018).
Li, M. et al. Spliceopathy induced by HNRNPA1 in a transgenic mouse model of myotonic dystrophy. proc. Natl. Acad. Science. 1175472–5477 (2020).
Crawford Parks, TE, Marcellus, KA, Péladeau, C., Jasmin, BJ, and Ravel-Chapuis, A. Overexpression of Staufen1 in DM1 mouse skeletal muscle exacerbates dystrophic and atrophic features. Hmm. Mol. Broom. https://doi.org/10.1093/hmg/ddaa111 (2020).
Carlier, PG & Reyngoudt, H. The growing role of MRI in neuromuscular disorders. Nat. Rev. Neurol. 16301–302 (2020).
Park, D., Lee, S.-H., Shin, J.-H. & Park, J.-S. Magnetic resonance imaging of lower extremity muscles in myotonic dystrophy type 1 correlates with six-minute walk test and CTG repeats. Neuromuscular. Disorder. 2829-37 (2018).
Perseghin, G. et al. Post-absorptive and insulin-stimulated energy and protein metabolism in patients with myotonic dystrophy type 1. A m. J. Clin. Nutr. 80357–364 (2004).
Jones, K. et al. GSK3β mediates muscle pathology in myotonic dystrophy. J. Clin. Invest. https://doi.org/10.1172/JCI64081 (2012).
Sabater-Arcis, M. et al. Musashi-2 contributes to muscle dysfunction in myotonic dystrophy by promoting excessive autophagy through repression of miR-7 biogenesis. Mol. The. Nucleic acids 25652–667 (2021).
Sabater-Arcis, M., Bargiela, A., Furling, D. & Artero, R. miR-7 restores phenotypes in myotonic dystrophy muscle cells by repressing hyperactivated autophagy. Mol. The. Nucleic acid 19278-292 (2020).
Loro, E. et al. Normal myogenesis and increased apoptosis in myotonic dystrophy type 1 muscle cells. Cell death differs. https://doi.org/10.1038/cdd.2010.33 (2010).
Hughet, A. et al. Molecular, physiological, and motor performance defects in DMSXL mice carrying >1,000 CTG repeats of the human DM1 locus. PLoS Genet. 8e1003043 (2012).
Morriss, GR, Rajapakshe, K., Huang, S., Coarfa, C. & Cooper, TA Mechanisms of skeletal muscle wasting in a mouse model of myotonic dystrophy type 1. Hmm. Mol. Broom. 272789-2804 (2018).
Brochoff, M. et al. Targeting dysregulated AMPK/mTORC1 pathways improves muscle function in myotonic dystrophy type I. J. Clin. Invest. 127549-563 (2017).
Jenquin, JR et al. Furamidine rescues myotonic dystrophy type I associated with poor splicing by multiple mechanisms. ACS Chem. Biol. 132708-2718 (2018).
Bisset, Dominican Republic et al. Therapeutic impact of systemic AAV-mediated RNA interference in a mouse model of myotonic dystrophy. Hmm. Mol. Broom. 244971-4983 (2015).
Strike, T. et al. Regional variation in thigh muscle fat infiltration in patients with neuromuscular diseases compared to healthy controls. As to. Med Imaging. Surg. 112610-2621 (2021).
Yushkevich, Pennsylvania et al. Active user-guided 3D contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimaging 311116-1128 (2006).
Otsu, N. A method of threshold selection from grayscale histograms. IEEE Trans. System Cybern Man. 962–66 (1979).
[ad_2]